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The excellent mechanical properties of laminated composite structures make them

prime candidates for wide variety of applications in aerospace, mechanical and other

branches of engineering. The enormous design flexibility of advanced composites is ob-

tained at the cost of large number of design parameters. Due to complexity of the systems

and lack of complete design based informations, designers tent to be conservative in their

design. Furthermore, any new design is extensively evaluated experimentally until it

achieves the necessary reliability, performance and safety. However, the experimental

evaluation of composite structures are costly and time consuming. Consequently, it is

extremely useful if a full-scale structure can be replaced by a similar scaled-down model

which is much easier to work with. Furthermore, a dramatic reduction in cost and time

can be achieved, if available experimental data of a specific structure can be used to

predict the behavior of a group of similar systems.

This study investigates problems associated with the design of scaled models. Such

study is important since it provides the necessary scaling laws, and the factors which

affect the accuracy of the scale models.

Similitude theory is employed to develop the necessary similarity conditions(scaling

laws). Scaling laws provide relationship between a full-scale structure and its scale model,

and can be used to extrapolate the experimental data of a small, inexpensive, and testable

model into design information for a large prototype. Due to large number of design param-

eters, the identification of the principal scaling laws by conventional method( dimensional

analysis) is tedious. Similitude theory based on governing equations of the structural

system is more direct and simpler in execution. The difficulty of making completely sim-

ilar scale models often leads to accept certain type of distortion from exact duplication

of the prototype (partial similarity). Both complete and partial similarity are discussed.

The procedure consists of systematically observing the effect of each parameter and corre-

sponding scaling laws. Then acceptable intervals and limitations for these parameters and

scaling laws are discussed. In each case, a set of valid scaling factors and corresponding

response scaling laws that accurately predict the response of prototypes from experimen-

tal models is introduced. The examples used include rectangular laminated plates under

destabilizing loads, applied individually, vibrational characteristics of same plates, as well

as cylindrical bending of beam-plates.
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The importance of employing small scale models in designing advanced composite

structures has been gaining momentum in recent years. With a view to better under-

standing the applicability of these models in designing laminated composite structures,

an analytical investigation was undertaken to assess the feasibility of their use. Em-

ployment of similitude theory to establish similarity among structural systems can save

considerable expense and time, provided the proper scaling laws are found and validated.

Before small scale models can be used, the technical barriers that must be overcome

are:

• What are the proper scale factors.

• What is the effect of these scale factors(scale effect).

In this study the limitation and acceptable interval of all parameters and corresponding

scale factors are investigated. In the present studies, the material behavior was assumed

to be linearly elastic. Therefore, scale effects are not present.

w

Completed Tasks

An analytical investigation has been conducted in order to establish the appficability

of similitude theory to Iaminated rectangular plates. Particular emphasis is placed on the

case of free vibration and buckling of plates under uniaxial compressive and shear loads.

Angle ply, cross ply and quasi-isotropic configurations were chosen for investigation.

Current Tasks

i) Nonlinear Kinematics, Linear Constitutive Relations

The large deflection analysis is performed on composite beam- columns subjected to

an eccentric axial compressive load. The loads are static. The objective of this investi-



gation is to developand validate the scalinglaws for nonlinearkinematic behavior(large

deformation) of simple genericstructural elements.

ii) Failure Analysis

The laminate failure analysis is investigated for first ply failure of composite beam-

columns. The beam-columns are subjected to static eccentric compressive loads. The

objective of this study is to develop and validate the necessary scaling laws corresponding

to stress analysis of laminated structures. In particular we like to predict the stress profile

in prototype by projecting the corresponding stresses of its scale model.

iii) Curved Configuration

The development of scaling laws which pertain to the elastic stability response of

laminated shells is currently being investigated. Particular emphasis is placed on the case

of buckling of orthotropic laminated cylindrical shells under axial compressive load.

w

Future Tasks

The following research and development must be done before small scale model can

be used in design and analysis of the composite laminated structures.

• Complete the investigation of curved configurations.

• Study the effect of boundary conditions.

• Study the applicability of scaled down models to geometrically stiffened structures.

• Study the effect of geometric imperfections.

• Design prototype and scaled down models for experimental validation( at this time it

is anticipated that tests will be performed at the "NASA Langley Research Center"

labs).
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STRUCTURAL SIMILITUDE FOR

LAMINATED STRUCTURES

O. J. SIMITSES and J. RZZA_EP_HA-_

University of Cincinnati, Cincinnati, OH 45221, U,S.A.

Abstract--Due to special characteristics of advanced reinforced composite materials, they require
extensive experimental evaluation. Thus, it is extremely useful to use available experimental data

of specific structural systems to predict the behavior of all similar systems. This study describes the
establishment of similarity conditions be, ween two structural systems. Similarity conditions

provide the relationship between a scale model and its prototype, and can be used to predict the
behavior of the prototype by extrapolating the experimental data of the corresponding small scale
model. Since satisfying all the similarity conditions simultaneously is in most cases impractical,
distorted models with partial similarity (with at least one similarity condition relaxed) are
employed. Establishing similarity conditions, based on direct use of governing equations, is
discussed and the possibility of designing distorted models is investigated. The method is demon-
strated through analysis of the cylindrical bending of othotropic laminated beamplates subjected
to transverse loads and buckling of symmetric laminated cross-ply rectangular plates subjected to

uniaxial compression.

NOMENCLATURE

a plate length

A t1 laminate extensional stiffnesses
b plate width

B_.t laminate coupling stiffnesses
D plate flexural stiffness

D_i laminate flexural stiffnesses
E_j Young's moduli of elasticity
F stiffness ratio
h total laminate thickness

k= bending curvature in the laminate
m, n number of half waves in x and y

M cross-ply ratio

M= moment resultant
N number of layers

N_ stress resultant
._ inplane load per unit width
P total transverse load

q transverse load intensity

Qu, 0.jj lamina stiffnesselements
t ply thickness
u, u, w reference (midplane) surface displacements

x, y, z reference axes
to midplane extensional strain
0 fiber orientation angle
A transformation matrix

A_ scalefactors

v, v_j Poisson's ratios
a_ ) normal stress in the kth lamina
m model

p prototype
pr. predicted
th. theoretical

INTRODUCTION

Aircraft and spacecraft comprise the class of aerospace stuctures that require efficiency
and wisdom in design, sophistication and accuracy in analysis and numerous and careful

experimental evaluations of components and prototype, in order to achieve the necessary

system reliability, performance and safety.
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Preliminaryand/or conceptdesignentailstheassemblage ofsystemmission require-

merits, system expected performance and identificationof components and their
connections as well as of manufacturing and system assembly techniques.This is

accomplished through experiencebased on previous similardesigns,and through the

possible use of models to simulate the entire system characteristics.
Detail design is heavily dependent on information and concepts derived from the

previous step. This information identifies critical design areas which need sophisticated
analyses, and design and redesign procedures to achieve the expected component

performance. This step may require several independent analysis models, which, in many

instances, require component testing.
The last step in the design process, before going to production, is the verification of

the design. This step necessitates the production of large components and prototypes in
order to test component and system analytical predictions and verify strength and

performance requirements under the worst loading conditions that the system is expected

to encounter in service.
Clearly then, full-scale testing is in many cases necessary and always very expensive.

In the aircraft industry, in addition to full-scale tests, certification and safety necessitate

large component static and dynamic testing. The C-141A ultimate static tests include eight

wing tests, 17 fuselage tests and seven empennage tests (McDougal, 1987). Such tests
are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one

should not expect that prototype testing will be totally eliminated in the aircraft industry.

It is hoped, though, that we can reduce full-scale testing to a minimum.
Moreover, crashworthiness aircraft testing requires full-scale tests and several drop

tests of large components. The variables and uncertainties in crash behavior are so many
that the information extracted from each test, although extremely valuable, is nevertheless

small by comparison to the expense. Moreover, each test provides enough new and

unexpected phenomena, to require new tests, specially designed to explain the new
observations.

In the building construction industry, when the skeleton frames are erected at the

site, a specified sequence of erection events must be followed in order to avoid collapse.
This was discovered through (expensive) experience, but it is not widely known. A small-

scale testing of similar structures would definitely have been safer and less costly.
Finally, full-scale large component testing is necessary in other industries as well.

Ship building, automobile and railway car construction all rely heavily on testing.
Regardless of the application, a scaled-down (by a large factor) model (scale model)

which closely represents the structural behavior of the full-scale system (prototype) can

prove to be an extremely beneficial tool. This possible development must be based on the
existence of certain structural parameters that control the behavior of a structural system

when acted upon by static and/or dynamic loads. If such structural parameters exist, a

scaled-down replica can be built, which will duplicate the response of the full-scale

system. The two systems are then said to be structurally similar. The term, then, that best

describes this similarity is structural similitude.
Similarity of systems requires that the relevant system parameters be identical and

these systems be governed by a unique set of characteristic equations. Thus, if a relation

or equation of variables is written for a system, it is valid for all systems which are similar
to it (Kline, 1965). Each variable in a model is proportional to the corresponding variable

of the prototype. This ratio, which plays an essential role in predicting the relationship
between the model and its prototype, is called the scale factor. In establishing similarity
conditions between the model and prototype two procedures can be used, dimensional

analysis and direct use of governing equations.
Models, as a design aid, have been used for many years, but the use of scientific

models which are based on dimensional analysis was first discussed in a paper by Rayleigh

(1915). Similarity conditions based on dimensional analysis have been used since Rayleigh's

time (Macagno, 1971), but the applicability of the theory of similitude to structural
systems was first discussed by Goodier and Thomson (1944) and later by Goodier (1950).

They presented a systematic procedure for establishing similarity conditions based on

dimensional analysis.
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In the 1950s and 1960s many interesting works were published in this area. Most of
these authors discussed similitude theory based on dimensional analysis. Kline (1965)
gives a perspective of the method based on both dimensional analysis and the direct
use of the governing equations. Szuzs tt980) is particularly thorough on the topic of
similitude theory. He explains the method with emphasis on the direct use of the

governing equations of the system,

Due to special characteristics of advanced reinforced composite materials, they have

been used extensively in weight efficient aerospace structures. Since reinforced composite

components require extensive experimental evaluation, there is a growing interest in small
scale model testing, Morton (1988) discusses the application of scaling laws for impact-

loaded carbon-fiber composite beams. His work is based on dimensional analysis. Qian

et al. (1990) conducted experimental studies of impact loaded composite plates, where

the similarity conditions were obtained by considering the governing equations of the

system. These works and many other experimental investigations have been conducted to

characterize the size effect in material behavior for inelastic analysis.

In recent years, due to large dime:,sions and unique structural design of the proposed

space station, small scale model testing and similitude analysis have been considered as the
only option in order to gain experimental data. Shih et al. (1987), Letchworth et al.
(1988), Hsu et al. (1989), and McGowan et al. (1990) discussed the possibility of scale

model testing of space station geometries especially for vibration analysis. Most of these

studies have used complete similarity between model and prototype.

The present study presents the applicability of small scale models, especially distorted

models, in analysing the elastic behavior of large and complex structural systems. By
applying similitude theory, we try to find a set of conditions between two similar

structural systems (scaling laws). Later, these conditions can be used to design a model,
the experimental data of which can be projected in order to predict the behavior of the
prototype. The objectives of the investigation described herein are:

• create necessary similarity conditions in order to design an accurate distorted
model;

• evaluate the derived similarity conditions analytically.

Similarity conditions provide the relationship between model and its prototype, and
can be used to extrapolate the experimental data of a small and less expensive model
in order to predict the behavior of the prototype. In all of our work in this area we will
restrict ourselves to linearly elastic material behavior. Furthermore, it is assumed that the
laminates are free of damage (delaminations, matrix cracking, fiber breaks, etc.).

THEORY OF SIMILITUDE

Similitude theory is concerned with establishing necessary and sufficient conditions
of similarity between two phenomena. Establishing similarity between systems helps to
predict the behavior of a system from the results of investigating other systems which have
already been investigated or can be investigated more easily than the original system.
Similitude among systems means similarity in behavior in some specific aspects. In other
words, knowing how a given system responds to a specific input, the response of all
similar systems to similar input can be predicted.

The behavior of a physical system depends on many parameters, i.e. geometry,
material behavior, dynamic response and energy characteristic of the system. The nature
of any system can be modeled mathematically in terms of its variables and parameters. A
prototype and its scale model are two different systems with similar but not necessarily
identical parameters. The necessary and sufficient conditions of similitude between
prototype and its scale model require that the mathematical model of the scale model can
be transformed to that of the prototype by a bi-unique mapping or vice versa (Szucs,

1980). It means, if vectors Xp and X,,, are the characteristic vectors of the prototype and
model, then we can find a transformation matrix A such that:

Xp = AX., or X., = A-'Xp. (1)

•°
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The elements of vector X are all the parameters and variables of the system. A

diagonal form of the transformation matrix A is the simplest form of transformation.
The diagonal elements of the matrix are the scale factors of the pertinent elements of the

characteristic vector X.

lA = x_z "'" , (2)

: "" i0 -.. ).,

where ;._, = x_p/x,,, denotes the scale factor of x_. In general the transformation matrix is
not diagonal.

Since similitude theory gives many alternative ways for investigating a system, it has

been used in areas which primarily involved many experimental investigations, such as

fluid mechanics, aerodynamics, hydraulics and modal analysis.

In establishing similarity conditions between the model and prototype two procedures

can be used, dimensional analysis and direct use of governing equations. The similarity
conditions can be established either directly from the field equations of the system or, if

it is a new phenomenon and the mathematical model of the system is not available,

through dimensional analysis. In the second case, all of the variables and parameters

which affect the behavior of the system must be known. By using dimensional analysis,

an incomplete form of the characteristic equation of the system can be formulated. This

equation is in terms of nondimensional products of variables and parameters of the

system. Then, similarity conditions can be established on the basis of this equation.

In this study, we consider only direct use of the governing equations procedure.
This method is more convenient than dimensional analysis, since the resulting similarity

conditions are more specific. When governing equations of the system are used for estab-

lishing similarity conditions, the relationships among variables are forced by the govern-

ing equations of the system.
The field equations of a system with proper boundary and initial conditions

characterize the behavior of the system in terms of its variables and parameters. If the

field equations of the scale model and its prototype are invariant under transformation A
and A -_, then the two systems are completely similar [eqn (1)]. This transformation

defines the scaling laws (similarity conditions) among all parameters, structural geometry

and cause and response of the two systems.
In order to demonstrate the applicability of the method, we consider the following

example. Suppose we want to design a reasonable (able to test) model for a large

rectangular plate. The plate is simply supported at all edges and loaded with a uniform

transverse load of intensity q. Assuming uniform cross section and isotropic material, the

governing differential equations and boundary conditions are well known (Timoshenko

and Woinowsky-Krieger, 1959):

d4w 2 d4w d4w q (3)
dx--_ + _-'_yZ +_--_y4 =_ '

and B.C. at x = 0, a

w=0

and at y = 0, b

d2w

dx _ = 0, (4)

w=0

d2w
-- = o. (5)
dy 2

-;;.

'); °
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For model and prototype we may write:

d4w_ d4w,,, d4w,. qm

+2 , , (6)dx;_ dy_ dy_ D,_

d4 wu d4wu d4wu qP (7)

where subscripts m and p refer to model and prototype, respectively.

By defining scale factors _._, the variables of the prototype can be written as

x_p = A_,x_m. The response similarity conditions between model and prototype (complete

similarity) are determined by substitution of the _,X,m into the differential equation of
the prototype and by requiring that the result be the differential equation of the model

[eqn (5)].

(.2yz_d4w,,, (_)d4w,,, (._4_d4w,,, (2.f_._q,,,+ 2 + = (8)
\2J dxm clAA,dy 2 \2;/d-_ D-'m_"

Equations (5) and (8) are the same if the terms in parentheses of eqn (8) are all equal.

2_ Jk, )._, 2q
";7 = _ = -7_ = _-DD" (9)

Now to find the scaling laws from eqn (9), we have three choices. Dividing eqn (9) by

first term, yields:

' _D

Dividing eqn (9)by the second term,yields:

and finally dividing eqn (9) by third term:

= (11)
2D

2. Aq2_
2o

(12)

Note that all three, eqns (10)-(12), are equivalent. This means that as long as

= 2y, the behavioral condition that relates the response factor, 2,,, to the cause scale]-Jr

factor, 2q, is the same for all three cases (complete similarity).
By applying similitude theory to a specific system, the result will be a set of

conditions among pertinent parameters (scale factors of the parameters) of this system
and its similar models. If all similarity conditions are satisfied, the two systems are

completely similar. Suppose the system has m variables and similitude analysis of the

governing equations of the system defines n relationships among m unknowns (scale

factors of these variables). If the two systems are completely similar m - n scale factors

can be chosen freely and the values of the other scale factors are found by using the n

similarity conditions. The arbitrary scale factors are usually chosen based on the

experimental facility, available material, and measurement techniques. By having the

parameters of the prototype and scale factors, the model parameters can be calculated

easily. Often complete similarity is difficult to achieve or even undesirable. This problem

is usually caused by limitations on conducting the experiment. When at least one of the

similarity conditions cannot be satisfied, partial similarity is achieved. In this case, the

model which has some relaxation in similarity conditions is called a distorted model.
Distorted models are more practical, since relaxation of each similarity condition

eliminates some restrictions on the model design. These relaxations in the relationship

between two systems cause model behavior to be different from that of the prototype.

Understanding of these relaxations (and their effect on model behavior) can be used to

modify the model test data so as to predict the behavior of the prototype. Since each

O_]*llll..t

..... ?........... _..-: ........



756 G.J. Sma'tsEsand J. Rr.zxE_P_z_xrrD

variable has different influence on the response of the system, the resulting similarity

conditions have different influence. By understanding the effect of variables and

similarity conditions over desired intervals, the similarity conditions which have the least
influence can be neglected without introducing significant error (Kline, 1965).

APPLICATIONS

..:_...--.-

. -..;.-_

. . --.

In this section, as an initial effort, similarity conditions are developed in order to

design reasonable, distorted, scale models for orthotropic laminated beamplates and

plates.

a. Cylindrical bending of laminated beamplates

a. 1. Deflections. We desire to find the maximum deflection of beamplates. Beam-

plates are subjected to transverse line loads. By assuming that the displacement functions
are independent of y, or u = u(x), v = O, w = w(x) (cylindrical bending), from Ashton

and Whitney (1970) the governing differential equations and boundary conditions are

reduced to:

d4w qAll (13)
dx-''7 = AnDll - B_11'

7

and the B.C.s at x = 0, a are:

d3u B,, d4w (14)
= A,I dx4'

w = o, (15)

du d2w

N_ = Ai, _ - BH _ = 0, (Ib')

du d2w

M= = B,, _ - Du _ = 0. (17)

.i
. ÷

. ..._ ..- ,

. . . . ... . .

Equation (13) can be writtenas:

4dw
(A,,Dtx - B_n)-_ = qA,,. (18)

By applying similitude theory, the resulting similarity conditions, eqn (18). are:

_.a. Z_ q, (19)2a,,AD,,A_ffi A2n._-wffi 4A

or

= )-nit,Za, jib,' 2 (20)

),,,21),,= 2_Aq. (21)

Similarly from eqns (14), (16) and (17) we have:

Aa,,A.A_ : A.An,,. (22)

_.nt,)..A_ = 2.)-o.. (23)

The condition depicted by eqn (23) does not give any new information, since it can

be obtained by combining eqns (20) and (22). So, eqns (20)-(22) denote the necessary
behavioral conditions for complete similarity between the scale model and its prototype.

--. ....... 7 -- "--{"
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a. 1.1. Parenthesis: for better understanding the restrictions of eqn (20), consider the

definition of A.,., Bin. and D,...

N

Am,, = E (Q,,,.)j(zj - zj_t),
j=l

N

B ,,,,, = -] .i= t

Dr.. = (Q,._lj( ,j - Z:-l),
j t

where zjisthe coordinateofthe upper surfaceof thejth lamina (measured from the plate

reference surface).Let zj = cjh where -0.5 _ cj<__0.5 and h is the totalthickness

(j = 0,I.....N). (Qm_)j,the transformedstiffnessesforthejth larninaaregiveninterms

of the engineeringorthotropicconstantsand the fiberorientationangleO.

(2 = f(O,Ell,Ez2, vt2,Glz).

This allowsus toexpressAm., B.,.and D.,. interms of h and functionsof allQ, N

and the stackingsequence.

A,_.= hL(O.m.,N),

B.,_ = hZfb(Q_.,,,,,, N),

D.,. : h%(__.,.,_0,
or as scale factors:

where:

,h.. = :-,&(Q,,,., N),

).... = _Fb(O.,., N),

(24)

(25)

(26)

Z(O'N)e i= a,b,d.
=:,(O,N)m'

Substitutionof eqns (24)-(26)intoeqn (20)yields:

F,(_,,, N)F,(_,,, 1,0 = F_(_,,, N). (27)

Equation (27) states that the first similarity condition, eqn (20), is independent of

total thickness of the plate, and it is only a function of material properties, number of

plies and stacking sequence of the model and its prototype. This condition, eqn (27), is

satisfied if the model and prototype are made of the same material with identical N and

the same stacking sequence of the lamina.
Now, the accuracy of the derived behavioral similarity conditions, eqns (20)-(22) is

evaluated analytically, in order to determine the level of confidence that can be expected

in interpreting the data from the distorted model experiments (partial similarity).

Consider a cross-ply laminated E-Glass/Epoxy plate composed of 96 orthotropic

layers (0/90/0/...)96 as the prototype. We desire to find the maximum deflection of the

prototype by extrapolating the pertinent values of a small scale model. The model has the

same stacking sequence as the prototype but with a smaller number of layers (distorted

model). The prototype and its scale model have the following characteristics:

prototype (0(90/0/...)96: a = 90in. b = 100in. h = 0.858in. N = 96,

model (0/90/0/...)t6: a = 5.0in. b = 6.139in. h = 0.143in. N-- 16,

scale factors: 2° = 18 2 b = 16.29 2, = 6 _._ = 6.
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12.0

p_.l_) .7"

..... t_,._p, /Ji

..........................................................°,"_ 6.0

.....................i........................!................................................

oo I
o.o 40.0 80.0 _20.0 160.0

Load (Ib/in)

Fig. [. Theoretical and predicted maximum deflections of prototype (0/90/0/...)96 when model

(0190101...)16 is used (2E,, = '_E= = 't,,_ = 1, 2° = 18, _-b = _'e = 16.92, _-h = 'IN = 6).

For simplification we assume that model and prototype have the same material

properties (2e,, = 2ez, = 2,,, = I) and 2q = 20. By employing only the similarity con-
dition of eqn (21) (note that ).p = ).,2q; therefore the condition becomes 2,,2D, = )._.e)
the theoretical maximum deflections of the model are projected in order to predict the

maximum deflections of the prototype. Figure i presents the theoretical and predicted
maximum deflections of the prototype and corresponding theoretical values of the scale
model. The derived scaling laws can be used with a high level of accuracy in predicting the
prototype behavior. Note that the model was designed by employing the free scaling

factors (partial similarity).

a.2. Stress analysis. For the kth lamina, the normal stress in terms of the strains and

curvatures (cylindrical bending) is:

tr(k) = g_o,)t_o + zk_), (28)
XZ _ _YXX

o is the extensional strain on the reference surface (z = 0) and k= represents thewhere exx
change in curvature of the reference surface.

By substituting the expressions for e° and k=

w 2_(k) _OOt,, + ½ ._ _ ZWxx). (29)Uxx _--- _Ii _,**,x

Applying similitude theory for the normal stress, tr=,

'*_= )'_i*t' + "7_ - 2: . (30)
-": _.x J-J

The resulting similarity conditions are:

).ck, = 2_)_,_,)._ "i, (31)
(rxx

2o_ = 2(_2_2; z, (32)

where 2_ = )._).e2_, and )._ = 2w27_2a, A_, [see eqns (21) and (22)].
For complete similarity, eqns (31)-(33) give the same result. However, for the

distorted model each similarity condition gives different results. To find which one of

eqns (31)-(33) gives the best prediction for the prototype behavior (partial similarity), the

c . " - °.. " '. ;. .• - "
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theoretical stresses of the model are projected with each condition and compared to
theoretical stresses of the prototype.

Figures 2-4 present the predicted and theoretical distributions of the normal stress a_
in various layers of the prototype for a cylindrical bending test. It is observed that the
predicted stresses by eqn (33) agree very well with the theoretical results. Equation (32)
cannot predict the behavior of the prototype accurately. Equation (31) is not a suitable
similarity condition, since its predicted data does not match the theoretical results. The

figures do not include the predicted stresses using eqns (31) and (32). This is purposely
done in order to simplify the figures. Since the results came from a three-point bending

ease, it is expected that the similarity condition based on bending normal stresses, eqn
(33), would yield accurate stress predictions.

0.08 _ _ _
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_ i !m : Kevlar_Epox'y

0.06 .............'L..............."...........................4-.............._...............

"-) 0.00 i i t !
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-0.08 )
-_ooo.o-2ooo.o-1ooo.o o.o 1ooo.o 2000.0 3ooo.o

Stress (Ksi)

Fig. 3, Predicted and theoretical normal stress (7. distributions in various layers of the prototype

(0J90J06) when (OJgO,,/O.,/90JO.O is used as model.
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Fig. 4. Predicted and theoretical normal stress a,_ distributions in various layers of the prototype

(0/90/0/...),1 when (0/90/0/...)16 is used as model.

It is necessary to note that the stress distribution in various layers of the prototype £s
completely different from the stress distribution in the model. But, the derived similarity
condition, eqn (33), can be used successfully to predict the stress distribution in the

prototype.

b. Buckfing of symmetric laminated cross-ply rectangular plates

Consider the case of cross-ply symmetric laminated plates (Bu = 0, D,6 = D:6 =

A_6 = A26 = 0). The plates are subjected to inplane uniaxial compression in the x

direction (N'x).
The buckling loads are described only by one differential equation:

o -/_f, w°,_= O, (34)Dll *_4/0zx.u r Jc 2J_l? H/?.r..-..FF + D22 ]4/#,_,yy

where/_12 = D12 + 2D_.

For simply supported plates, the boundary conditions axe:

at x = 0, a

at y = O, b

The solution:

w = 0, w ° = 0,
pX.l"

0 =0.
W = O, W,yy

/mnx\ . i:nny'_

satisfies the boundary conditions and governing differential equation if:

n 4 a 2

By applying similitude theory to eqn (35):

k.k=
_'N, =)'Ott _a2 = _-b_z zn),_ )'O= _--T'_-_2'^b^m

(35)

(36)
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- . .., - . ,

which yields to the following scaling laws:

22
_'N, = )'On "_. '

ff

(37)

Boundary conditions do not yield any similarity condition. Equation (37) can be

written as:

;% = J-D_J._ ' (40)

where:
1 "12_2

Nxb 2 r.Dil^b m

Ki _ IrK i = 2 "= _ )_)_a

Conditions (38) and (39) are considered as design scaling laws and condition (40) is

considered as response scaling law.

f

-. !
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. - ..::.-:-:-:
. . " . .

-+.

A

i

: ,-;, .: , :'

b.1. Complete similarity. The necessary condition for complete similarity between
the model and its prototype is that all the design scaling laws predict the behavior of the
prototype with the same accuracy. In other words 3.R, = ;L_2• This equality is satisfied if

[see eqns (38) and (39)1:

JDI2 = J'D_I' _Dii_'D_ = _'_i2" (41)

From Tsal (1964), the bending stiffnesses D,.. can be expressed as a function of the
total number of layers, N, the cross-ply ratio, M, and stiffness ratio, F,

h 3

Dtt = [(F- 1)_' + l]]_Qn,

h 3

D22= [(l -- F)_ + F]12 Q_'

where F = Ez2/Ett = Qz2/Qn and

1 M(N- 3)[M(N- 1) + 2(N + 1)]

q/= (1 + 34) 3 + (N 2 - 1)(1 + M) _ '

where M is the cross-ply ratio and N is the total number of plies. For the common special

case of symmetric cross-ply laminates (0/90/0/...)_, in which the laminae are all the same
thickness and have the same material properties:

= (42)

N+I
M--_

N-1

Substituting into eqn (41)

(F_ Dig., + - F_)_/_+ F_J

Ingeneral,by choosingthemodel materialand usingeqn (42),thenumber ofplies

of model (N,.)can be determined•SinceN.,must be an integer,itisdifficultto satisfy

eqn (42),thereforepartialsimilaritywitha distortedmodel ispursued.

. , .=. ........ ,.-, .
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For simplification we assume that model and prototype have the same material

properties (2El t = ,_Ez z = J'v_, = 1). If the model and prototype have the same material
properties then _.Q,, = _'Q,2 = 1 and Fp = F,,, = F and eqn (42) can be simplified as:

[(F - 1)_p + 1][(1 - F)_p + F] = [(F- 1)_,,, + 11[(1 - F)q/,,, + F],

vG" (u/.- I)= v/,.•(u/.,- I),

f(Np, Nr,,) = _P" (_'P- I) = 1.
q/,,,. (gt,,, - I)

The numerical values off(.Vp, N,,) are plotted over a large range of N,,, for several
N u in Fig. 5. From Fig. 5, it is verified that complete similarity is achieved if AN = 1. It
is also important to notice that, as the number of plies of prototype increases, ,t,v = 1 also
satisfies the condition f(Np, :V,,)= 1 and complete similarity is achieved. Since the
number of plies, Np and N,, are integer numbers this condition exists for large Np.

So far we proved in the special case when )-N = 1, condition f(Np, N,,) = 1 is
satisfied and complete similarity is achieved. However, there are some constraints, such
as the geometry of the model, the model material, the number of plies and the stacking
sequence of laminates. Since this still appears to be restrictive, we proceed with the
determination of distorted models, for which some of these restrictions can be relaxed.
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Fig. 5. Sensitivity of complete similarity condmon Ao ,Ao, 2 = _.ou for different A,¢
• • T . "t(f(Np, N,,) = 2D, ,2o,:/,_b,, " = 1 complete stmdan y).

b.2. Partial similarity. When at least one of the design scaling laws cannot be
satisfied, partial similarity is achieved. In this case, since each parameter has different
influence on the response of the system, the resulting design scaling laws have different
influence on the accuracy of the predicted response• By understanding the effect of the

various parameters and accuracy of the design scaling laws over desired intervals, the
design scaling laws which have the least accurate prediction can be chosen as the "right"

type of distortion.
The choice of the right type of distortion is investigated as follows. In each case, all

of the model parameters except one, are chosen to be identical to its prototype. Then, the
effect of this relaxation for a wide range of this parameter is investigated.
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b.2.1. Number of plies: since we assume all the laminae to have equal thickness, the
distortion in thickness is the same as the distortion in number of plies (htota I = N" hlaminae).

In other words, thickness is only a function of the number of plies. Consider that the
model and prototype have the same material properties (Kevlar/Epoxy 49) with a

different number of layers (N,, _ Np). Figure 6 presents the per cent of discrepancy
between theoretical and predicted values of the normalized critical load (Kt) for simply

supported rectangular plates. In these cases, the prototype is a laminated cross-ply
(0/90/0/...)tot squareplate with Rp = 1. The accuracy of the designed distorted models
with the same stacking sequence but with a different number of layers [(0/90/0/...)i] is

investigated. The R,,, is determined by using both design scaling laws [eqns (38) and (39)].
Figure 6 shows that, as the number of plies of the model increases, the accuracy of the
model increases very quickly. Models with N = I, or 3 do not have acceptable accuracy.

Equation (39) is the best design scaling law, especially for a model with 5 _<N,, < 40. For

N,,, > 40 all conditions yield the same accuracy.
The accuracy of a model with N = 13 in predicting the buckling behavior of proto-

types with N >- 101 is also investigated. It is shown that, the model with N,, = 13 can
predict the critical load of any prototype with Np = 10I ..... 500 with the same accuracy
as prototype with Np = 101. In other words, the accuracy is independent of Np when

N. >--101.
This study indicates that a distorted model with a smaller number of layers cart

i,

predict the critical load of its prototype with good accuracy.

40.0

30.0

20.0

-10.0

-20.0
0

t i I i
, I

i _p : Kevlar/_oxy 49 (0/90/0...)_o,
, !rn : Kevlor/Epoxy 49 (_/90/0...).i

i1 'i t
t

i I

i
I

i :
20 40

Fig. 6. °7o discrepancy of normalized buckling loads (Kt) when N_ < Np (distortion in N).

b.2.2. Material: now we consider the distortion in model material. For this purpose

two different groups are considered: isotropic materials (which include metals and
plastics) and fiber-reinforced composites. In all cases the prototype is considered to be an

orthotropic laminated plate.
The model and its prototype have the same stacking sequence, number of plies

[(0/90/0/...)t3] and aspect ratio. Figure 7 presents the per cent of discrepancy when the
model and prototype have different material properties. For the Kevlar/Epoxy prototype,
a Boron/Epoxy, a Boron/Polymide and most of the Graphite/Epoxys can be be used as
the model material and vice versa. However S-Glass/Epoxy is not a good choice for

predicting a Kevlar/Epoxy prototype and vice versa. The design scaling laws of eqn (38)

yield the best accuracy.

....... . ............. 7". -
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Fig. 7. % discrepancy of norm_zed buckling loads (K_) for different composite materials. Model
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Fig. 8. % discrepancy of normalized buckling load for different isotropic materials. Model and

prototype have the same stacking sequences (0/90/0/...)1s.

Since plastics are used ex_ensively for the experimental study of the behavior of the
structures, the possibility of a plastic model or in general a model with isotropic materials
is considered. Figure 8 presents the per cent of discrepancies for models with isotropic
materials. The prototype is Kevlar/Epoxy plate [(0/90/0/...)_s]. Almost all of the
plastics, copper and aluminum which are used, give the same accuracy for the design
scaling law of eqn (39) (30% discrepancy). But the design scaling law of eqn (38) yields
better accuracy (less than 5.3°'o).

DISCUSSION

An extensive study based on analytical investigations has been conducted in order to
establish the applicability of similitude theory to simple structural elements. Theory of
similitude is used to design scale models for orthotropic laminated beamplates and to

predict the behavior of the prototype, with reasonable accuracy. Similarly data of scale
models are projected to predict prototype behavior. Even for models with different
numbers of plies and stacking sequence of layers (distorted models) the predicted data are
well-matched with full scale prototype data.

By establishing similarity conditions the model parameters are specified. First, there
is a need to verify the derived similarity conditions. The verification should be based on
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exact analytical solution of the system. Furthermore, a validation procedure based on

experimental data of two or three small scale models of the actual system (prototype)

should be conducted. For example, at '.east two different small scale models of the proto-

type should be designed and tested. One of these models should serve as prototype and the

other one as scale model• The experimental data of the model should be used to predict
the behavior of the other one. This increases the confidence factor.

CONCLUSIONS AND RECOMMENDATIONS

While several experimental studies can be done on prototype or large scale models,

size constraints will limit experimentat{on on complete structures in most cases to small

scale models. Small scale models can be used as a complement for analytical and

computational investigations in solving the design problems of complex structures. The

investigation in this study indicates that the use of small scale models can predict the
behavior of the prototype very. well.

Partial similarity based on direct use of governing equations is more convenient than
dimensional analysis, because additional relationships are not needed and the derived

similarity conditions are based on satisfaction of the field equations of the system.

In the present study, similitude theory, was used by employing systems for which the

experimental results are not known. In this case, one system was considered to be the

prototype and another its scale model. Then through the use of the proper scaling laws the

theoretical data of the model were used to predict the behavior of the prototype. Success

was measured by comparing the predicted behavior to the analytical results.
Some recommendations for future research:

• develop the method for designing and employing scale models for more complex

systems, i.e. stiffened and/or laminated curved configurations;

• one of the major problems associated with inelastic analysis of the small scale
model is the effect of size. A need exists to evaluate the size effect in material

behavior expecially for geometries with higher scale factors. This is also true in

dealing with establishing the strength of laminated structures, since strength is

affected by the accumulation of damage.
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Structural Similitude and Sealing Laws for

Cross-Ply Laminated Plates

G. J. SIMITSESt AND J. REZAEEPAZHAND*

Abstract. The increasinguse of laminatedcomposite components for a wide varietyof

applicationsin aerospace,mechanicaland otherbranches of engineeringrequiresextensiveex-

perimental evaluationofany new design.Thus, itisextremelyusefulifa full-scalestructurecan

be replaced by a similarscaled-downmodel which ismuch easierto work with. The objectiveof

thisstudy istoinvestigativeproblems associatedwithdesignofscaledmodels. Similitudetheory

isemployed todevelopthe necessarysimilarityconditions.Both complete and partialsimilarity

are discussed.The procedure consistsof systematica/lyobservingthe effectof each parameter

and correspondingscalinglaws.Then acceptableintervalsand limitationsfortheseparameters

and scaring laws are discussed. In each case, a set of valid scaling factors and corresponding re-

sponse scaling laws that accurately predict the response of prototypes from experimental models

is introduced. Particular emphasis is placed on the cases of buckling of rectangular cross-ply

laminated plates under uniaxial compressive and shear loads. This analytical study indicates

that distorted models with a different number of layers, material properties, and geometries than

those of the prototype can predict the behavior of the prototype with good accuracy.

Nomenclature

a plate length Qij, Qij lamina stiffness elements

Aij laminate eztensionaI stiffnesses R aspect ratio

b plate width u,v,w reference surface displacements

Bij laminate coupling stiffnesses t ply thickness

Dij laminate flexural stiffnesses Ai scale factors

Eij Young's moduIi of elasticity vii Poisson's ratios
h total laminate thickness rn model

I(,=, K,, f(, non-dimensional critical loads p prototype

Mz, M_ moment resultants pr. predicted

_,._, fifty inpIane normal loads th. theoretical

N_ inplane shear load

INTRODUCTION

The last step in the design process, before going to production, is the verification of

t Professor and Head, " Graduate Research Assistant, Department of Aerospace Engineering and

Engineering Mechanics, University of Cincinnati, Cincinnati, Oil 45221.
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the design. This step necessitates the production of large components and full scale pro-

totypes in order to test component and system analytical predictions and verify strength

and performance requirements under the worst loading conditions that the system is ex-

pected to encounter in service. A scaled-down (by a large factor) model, scale model,

which closely represents the structural behavior of the full-scale system, prototype, can

prove to be an extremely beneficial tool. This possible development must be based on

the existence of certain structural parameters that control the behavior of the structural

system when acted upon by static and/or dynamic loads. If such structural parameters

exist, a scaled-down replica can be built, which will duplicate the response of the full-scale

system. The two systems are then said to be structurally similar. The term, then, that

best describes this similarity is Structural Similitude.

Due to special characteristics of advanced reinforced composite materials, they have

been used extensively in weight efficient aerospace structures. Since reinforced composite

components require efficiency and wisdom in design, sophistication and accuracy in anal-

ysis, and numerous and careful experimental evaluations, there is a growing interest in

small scale model testing[4].

By applying similitude theory, we try to find a set of conditions between two similar

structural systems (scaling laws). Later, these conditions can be used to design a model,

the experimental data of which can be projected in order to predict the behavior of the

prototype.

The objectives of the investigation described herein are:

• create necessary similarity conditions in order to design an accurate distorted model

- distortion in stacking sequence and number of plies (N)

• ply - level scaling

• sublaminate - level scaling

- distortion in material properties Eij, vii,p

• evaluate the derived similarity conditions analytically.

Similarity conditions provide the relationship between model and its prototype, and

can be used to extrapolate the experimental data of a small and less expensive model in

order to predict the behavior of the prototype. This study presents the applicability of

small scale models, especially distorted models, in analyzing the elastic behavior of cross-

ply laminated plates. Furthermore, it is assumed that the laminates are free of damage

(delarninations, matrix cracking, fiber breaks, etc.).

In this study, we consider only the procedure that is based on the direct use of the

"governing equations". This method is more convenient than dimensional analysis, since

the resulting similarity conditions are more specific and the relationships among variables

are forced by the governing equations of the system.

Often complete similarity is difficult to achieve or even undesirable. When at least

one of the similarity conditions can not be satisfied, partial similarity is achieved. In this

case, the model which has some relaxation in similarity conditions is called a distorted

model. Distorted models are more practical, since relaxation of each similarity condition
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eliminates some restrictions on the model design. These relaxations in the relationship

between two systems cause model behavior to be different from that of the prototype.

Since each variable has different influence on the response of the system, the resulting

similarity conditions have different influence. By understanding the effect of variables

and similarity conditions over desired intervals, the similarity conditions which have the

least influence can be neglected without introducing significant error[3].

Buckling of Symmetric Laminated Cross-Ply Rectangular Plates

Consider symmetric cross-ply laminated plates (Bq = 0 , Dis = D2s = Als = A2s =

0), The plates are subjected to inplane normal and shear loads ( N=,, K/_y ,/_/',y). The

governing differential equations for buckling and vibration of symmetric cross-ply rectan-

gular plates are as follow [1]

Al,uO= + A,=vO,_= + Ass(u°,_ + v,°) = 0 (1)

0 --
A_(u°. + v_..) + A,2u°_ + A22v,°y 0 (2)

N,_w,_y pw,tt (3)- o - o _ = oDnwO,==== + 2Dl=w°,==_ + D==w,_y -

where b12 = DI= + 2Dss

For simply supported plate, the approximate boundary conditions are

a_ x=0, a

at y = O, b

L Uniazial Load :
compression load in z direction (N**). The buckling differential equation is:

- 0 - 0

Dnw°,=== + 2D12w°,==_v + D,._w,_ - N==w,== = 0 (4)

w=O , M==-Dnw°==O

I_ 0 =0w = O ,, 1_ = -D=2w,_

Consider the plates to be subjected to inplane uniaxial

The solution . mrcz . n_ry
w = A_,_sm(T)sm(-"_')

satisfies the boundary conditions. Then,

/7" 2 _' 4 a 2

._= = r2[Dn(a)= + 2D_=(_) + D==(_) (m) ]
(5)

By applying similitude theory to Eq.(5)

4 2

which yields to following scaling laws

(6)

(7)
-- " 3
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AK== = - 3
AEnA_

AD.: A_tA;

(3)

(9)

lf[=zb 2
where I(r= =

E2aA 3

Boundary conditions do not give any similarity condition. These conditions, Eqs.( 7)-

(9), involve response(AK,=, Am, A,.,)and structural geometric parameters (lo,,, Ah, An).

II. Shear Buckling: We now consider a simply supported plate which is sub-

jected to the an in-plane shear stress (Z_'== = -_V_v w ° = 0)..m ,it

Dt_w°_== + 2Dnw°=v_ + D::w_v_v - 9N=_w°_ = 0 (10)

The solution of the form

mTF2

w°= ,,,=t ,.,=t_ _ A""sin(-_')sin(n"rY'-'_')

satisfies all B.C.'s, but does not satisfy the buckling equation, Eq.(10).
Galerkin procedure, yields

Use of the

Du m 4 Dn m2n _ Dn 32ran _ _
(E_.ah3R3 +2Enh 3 R + E. h 3Rn4)A"_=I(" -_ _-_-_ApqQ,_,pq (11)

22 p=l q=l.

for rn, n = 1,2,..., c¢ ; subject to the constraints m 4- p = odd and n 4- q = odd.

K, _r_wb2 a p q
= E=h ' R = , =

Applying similitude theory to Eq.(11)

p=tq=l

where

(12)

Parenthesis:

m, n,p, and q are integers which depend on the number of terms needed to approxi-

mate well the buckling mode shape (Symmetric/Anti-symmetric). By assuming the same

aspect ratio for the model and its prototype (AR = 1) and similar construction, model

and prototype both can be well approximated by the same number of terms in the series

with the same contribution of terms to the buckling mode and thus

A,,,= A,,= A,,= Aq = 1 _ An = I ,AA,_. -- 1
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Eq.(12) yields to the following scaling laws

•XD,, (13)
)_K. '-" 3 3

_D,2 (14)
,_K, =

,kgo-- AD22 (15)

These conditions, Eqs.( 13)-(15), also involve response and structural geometric param-

eters.

Complete Similarity "
The necessary condition for complete similarity between the model and its prototype

is that all scaling laws be satisfied. This requirement yields

ADll = )_D_2= AD_ (16)

By inspection it can be seen that these conditions, Eqs.(16), are independent of ply

thickness and they only depend on material properties and number of plies. So, two plates

with different ply thickness but the same stacking sequences (i.e.(0/90), and (0_/90=),)

satisfy Eqs.(16). This is called ply-level scaling and it is the easiest way to achieved

complete similarity. Table 1 presents the ply-level scaling for cross-ply plates under inplane

shear loads.
So far, we have shown that in the special case of ply-level scaling similarity can be

achieved. However, there are some constraints, in designing the model. These constraints

involve the geometry of the model, the model material, the number of plies and the

stacking sequence of laminates. Since this still appears to be restrictive, we allow the use

of distortion in the design of the model.

Table 1 Comparison of shear buckling loads of Kevlar/Epozy plates with ply - level

scaling(complete similarity).

r

model

Configuration

- (0_/902),
- (01o/901o),
"---_:0/902o),

Nx_b _

IQ- E22h 3

model prototype I p_dicted
32.74 32.74 32.74

32.74 32.74 32.74

32.74 32.74 32.74

%Disc.

th.(p)&pr.(p) I th.(p)&th.(m)0.0 0.0

0.0 0.0

0.0 0.0

%Disc.(th.&pr.) = 100 x
Itheory - predicted I

theory

Partial Similarity " When at least one of the design scaling laws cannot be

satisfied, partial similarity is achieved. By understanding the effect of parameters and

accuracy of the scaling laws over desired intervals, the scaling laws which yield the most



,_ 270 DESIGN

m

accurate prediction for the prototype can be chosen as corresponding to the "right" type
of distortion.

The choice of the "right" type of distortion is investigated as follows. In each case, all

of the model parameters except one, are chosen to be identical to its prototype. Then,

the effect of this relaxation for a wide range of this parameter is investigated.

Number of Plies : There are three ways to scale down the number of plies in

a model, a) ply-level scaling((0,/90,),) b)sublaminate level scaling[2]((0/90),,,) and

c) general reduction of plies. The ply-level scaling leads to complete similarity(as al-

ready discussed). But the two other methods yield partial similarity. Figures 1 and

2 present the compressive and shear buckling loads for models with different number of

plies than those of the prototype and the predicted loads by using scaling laws depicted by

Eqs.( 8)and(14). Both sublaminate level and general scaling are presented. It is shown

that all models(except for (0/90/0)) can predict the prototype behavior with excellent

accuracy.

Table 2 Accuracy of models with sublaminate level scaling (Np # N_) using

non-dimensional load if,, hz,, = ,k_., = I; (0/90)20,.

model

Configuration

(0/90)2,

(Ol9Oho,

model

32.740

34.009

34.034

K,- N_b_
E_2h 3

prototype predicted
34.040 32.740

%Disc.

th.(p)&th.(m)

3.82 3.82

34.0.10 34.009 0.09 0.09

34.040 34.034 0.02 0.02

= =

m

N

= =

Table 3 Accuracy of models with sublaminate level scaling (Np ¢ Nm), using

non-dimensional load ffi,, Azo = )%, = 1 ; (0/90):o,.

model

Configuration model

(0/90)1os

!_', = N=ub'2
D22

prototype predicted

%Disc.

th.(p)ap,..fp) th.(p)&th.(m)

(0/90)2s 150.20 56.763 54.594 3.82 164.61

(O/90)s, 63.045 56.763 56.709 0.10 11.07

58.718 56.763 56.752 0.02 3.45

Material : Now we consider distortion in model material. For this purpose two

different groups are considered: Isotropic materials (which include metals and plastics),

and fiber reinforced composites. In all of these cases the prototype is an orthotropic

laminated plate.

For the composite model, model and prototype have the same stacking sequence, number

of plies ((0/90/0...)13) and aspect ratio. Figures 3 and 4 present theoretical and predicted

buckling loads of prototype and theoretical ones of the models for some typical composite

materials. For the Kevlar/Epoxy prototype a Boron/Epoxy, Boron/Polymide, and most

of Graphite/Epoxy's can be used as the model material or vice versa. But Glass/Epoxy

is not a good choice for predicting a Kevlar/Epoxy prototype or vice versa.

y
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Since plastics are used extensively in ex'perimental studies of the behavior of the struc-

tures, the possibility of a plastic model or in general a model with isotropic materials is

considered. For isotropic materials, the assumption of AR = 1 yields a model which cannot

predict accurately the behavior of the prototype. By choosing R,,, as a design parameter

we are able to find isotropic models which yields excellent accuracy. Scaling laws depicted

by Eq.(8) and Eq.(14), yield acceptable aspect ratios for the models. Tables 4 and 5

present theoretical and predicted buckling loads for prototypes when the corresponding
models are isotropic material.

Table 4 Relaxation in material properties by using isotropie model.

Prototype Is Kevlar/Epozy (0/90)20_ .

model

material R,_ model

Aluminum 0.705 4.174

Brass 0.705 4.143

Copper 0.705 4.149

Steel 0.705 4.045

PVC 0.705 4.374

Polyethylene 0.705 4.760

K==- N==b';
E_ h3

prototype I predicted

%Disc.

th.(p)&pr.(p)
14.16 0.0 70.5114.16

I 14.16

.... '

14.16 0.0 50.80

14.16 14.16 0.0 70.69

14.16 [ 14.16 0.0 71.36

14.16 [ 14.16 0.0 69.1

14.16 [ 14.I6 0.0 66.38

Table 5 Relaxation in material properties by using isotropic model. Prototype is

Kevlar/Epozy (0/90)=o,-

m
model

material R,_

Aluminum 0.627

Brass 0.627

Copper 0.627
Steel 01627

PVC 0.627

Polyethylene 0.627

model prototype

20.22 34.04

20.07 34.04

20.10 34.04

19.63 34.04

21.18 34.04

23.05 34.04

predicted

34.04

34.04

34.04

34.04

34.04

34.04

%Disc.

th.(p)&pr.(p)

0.0

0.0

0.0

0.0

0.0

0.0

th.(p)ath.(m)
40.61

41.02

40.97

42.32

37.77

32.28

DISCUSSION

An analytical investigation has been conducted in order to establish the applicability of

similitude theory to cross-ply laminated plates. The results presented herein indicate

that for elastic response of a cross-ply rectangular plate, based on structural similitude,

a set of scaling laws can be found to develop design rules for small scale models. By

establishing similarity conditions, the model parameters are specified. The accuracy of

predicted prototype behavior by various models is investigated. The verification is based

on the exact analytical solution of the model and its prototype. Theoretical compressive
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and shear buckling loads of scale models are projected to predict corresponding prototype

behavior. Even for models with different number of plies and stacking sequences (distorted

models) the pred:cted data are well matched with full scale prototype data. For both load

conditions the enforcement of the same response scaling law Eq.(8) and Eq.(14) yidds

models which yield accurate predictions. In the present study we assume that, except for

isotropic models, prototype and models have the same aspect ratio(Aa = 1). This is not a

necessary condition and in general (ha # 1). The accuracy of prediction is very sensitive

to the scale factor of the aspect ratios.

CONCLUSIONS AND RECOMMENDATIONS

Small scale models can be used as a complement for analytical and computational investi-

gations in solving the design problems of complex structures. This study indicates that a

distorted model with a fewer number of layers can predict buckling load of the prototype

with good accuracy.
Partial similarity based on direct use of governing equations is very convenient. There

is tremendous freedom in design scale models because the number of similarity conditions

is much smaller than the number of design variables.

Some recommendations for future research:

• Develop the method for designing and employing scale models for more complex

systems, i.e stiffened and/or laminated curved configurations.

• Experimental verification of the accuracy of the purposed scaled model.

• Implemention of the structural similitude to inelastic and failure analysis of com-

posite structures.
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DESIGN OF SCALED DOWN MODELS FOR

STABILITY AND VIBRATION STUDIES

J. Rezaeepazhand" and G. J. Simitses t

Department of Aerospace Engineering and Engineering Mechanics

University of Cincinnati, Cincinnati, OH 45221.

ABSTRACT

Use of reinforced composites in light-weight a_rospace structures has increased stadily over

the years. The outstanding mechanical and physical properties of advanced composites

provide the engineer with potential to optimize properties specific to application. Since

reinforced composite components require efficiency and wisdom in design, sophistication

and accuracy in analysis, and numerous and careful experimental evaluations, there is a

growing interest in small scale model testlng 1.

A scaled-down (by a large factor) model, scale model, which closely represents the struc-

tural behavior of the full-scale system, prototype, can prove to be an extzemely beneficial tool.

This possible development must be based on the existence of certain structural parameters

that control the behavior of the structural system when acted upon by static and/or dynamic

loads. If such structural parameters exist, a scaled-down replica can be built, which will du-

plicate the response of the full-scale system. The two systems are then said to be structurally

similar. The term, then, that best describes this similarity is Structural Similitude.

Similitude theory is employed to develop the necessary similarity conditions(scaling laws).

Scaling laws provide relationship between a full-scale structure and its scale models, and can

be used to extrapolate the experimental data of a small, inexpensive, and testable model into

desio_n information for a large prototype. The difficulty of making completely similar scale

models often leads to accept certain type of distortion from exact duplication of the prototype

(partial similarity). Both complete and partial similarity are discussed. The procedure

consists of systematically observing the effect of each parameter and corresponding scaling

laws. Then acceptable intervals and limitations for these parameters and scaling laws are

discussed. In each case, a set of valid scaling f_tors and corresponding response scaling laws

that accurately predict the response of prototypes from experimental models is introduced.

• Graduate Research Assistant. t Professor and Head, ,Associate Fellow of AIAA.
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Particular emphasis is placed on the cases of free vibration and buckling of rectangular

angle-ply laminated plates under uniaxial compressive and shear loads. This analyticxl

study indicates that distorted models with a different number of layers, material properties,

and geometries than those of the prototype can predict the behavior of the prototype with

good accuracy.

The objectives of the investigation described herein are:

• create necessary similarity conditions in order to design a distorted model that accu-

rately predicts prototype behavior.

- distortion in stacking sequence and number of plies (N)

ply - level scaling and sublaminate - level scaling

- distortion in material properties E_j, vlj, p

- distortion in fiber orientation angle 0

• evaluate the derived similarity conditions analytically.

In all of our work in this area we will restrict ourselves to linearly elastic material behavior.

Furthermore, it is assumed that the laminates are free of damage (delaminations, matrix

cracking, fiber breaks, etc.).

In this study, we consider only the procedure that is based on the direct use of the

"governing equations". This method is more convenient than dimensional analysis, since the

resulting similarity conditions are more specific and the relationships among variables axe

forced by the governing equations of the system.

Consider symmetric angle-ply laminated plates (Bij = 0). The plates axe subjected

to inplane normal and shear loads ( 19=, Nyv, N_)" The buckling loaxts and vibration

frequencies of symmetric angle-ply rectangular plates are described only by one differential

equation2:

o 0 - 0 0 w° R to°D w +4Dlsw +2D12w +4D=sw +D22 _ = _, _ ._ ,J .._11 ,=zz ,zz=y ,x_"¢lS ,zyyy ,Y -- -- --

where Z$12 = DI= + 2Dss

For a simply supported plate, the boundary conditions are

at z = O, a to=0 , M.=-Dnw°.==0

;: 2
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at y = O,b w = O ,, My = -D::w°,_ =0

I. Shear Buckling: We now consider a simply supported plate which is subjected

to the an in-plane shear stress (/_/'= Nvv w ° = 0).--" --" ,tt

m,'rx_ . .n,'ry.
The solution of the form w° = _=i _=l A.,.sin(_)sm(--_') satisfies all B.C.'s, but does

&

not satisfy the buckling equation, Eq.(2). Use of the Galerkin procedure, yields

rn 4 _ m2n 2 n 4

(D,,-j + 2D1:_--r_-6_+ D.-_)A_ =

_b _ _ + _)A_Q_ (3)
p=l q=l

for m, rt = 1,2,.. •, z¢ ; subject to the constraints m -+.p = odd and rt _.+_q = odd.

a Pq

where R = _ , Q,_.pq = (m=-_)(.2_ q2)

m, n, p, and q are integers which depend on the number of terms needed to approximate

well the buckling mode shape(Symmetric/Anti-symmetric). By assuming the same aspect

ratio for the model and its prototype (Aa = 1) and similar construction, model and prototype

both can be well approximated by the same number of terms in the series with the same

contribution of terms to the buckling mode and thus

)t,_ = A_ = Ap = A_ = 1 ==_ An = 1, As,,, = 1

Applying similitude theory to Eq.(3) yields the following scaling laws

ADu

A_AR

AO,2

)tD16

AK. _'_2 3 2- )_hAR

AD_,

(4)

(_)

(6)

(7)

(s)

._r_b2

where K, = -E==hz

3
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These conditions, Eqs.( 4)-(8), contain both response and structural geometric param-

eters.

Complete Similarity " The necessary conditions for complete similarity between

the model and its prototype is that all scaling laws be satisfied. This requirement yields

_'D,, = '_,_1== ,XD:== _D,, = )_D,, (9)

By inspection it can be seen that these conditions, Eqs.(9), are independent of ply thicknesses

and they only depend on material properties and number of plies. So, two plates with

different ply thickness but the same stacking sequences (i.e.(0/+ 45/90/- 45), and (0,/+

45,_/90,/- 45,)°) satisfy Eqs.(9). This is called ply-leve! scaling and it is the easiest way to

achieved complete similarity. Table 1 presents the ply-level scaling for angle-ply plates under

inplane shear loads.

So far, we have shown that in the spedal case of ply-level scaling similarity can be

achieved. However, there are some constraints, in designing the model. These constraints

involve the geometry of the model, the model material, the number of plies and the stacking

sequence of larainates. Since this still appears to be restrictive, we allow the use of distortion

in the design of the model.

Table 1 Comparison of shear buckling loads of Graphite/Epozy plates with ply - level

scaling(complete similarity}.

model

Configuration model
30.721(01 + 45/90/- 45),

(03/+ 453/903/- 453),

(010/+ 4510190101 - 451o),

N_b 2
Ks = E_h---"_

prototype predicted

30.721 30.721

30.721 30.721 30.721

30.721 30.721 30.721

%Disc.

th.(p)&pr.(p) th.(p)_th.( m) -

0.0 0.0

0.0 0.0

0.0 0.0

[theory - predie_edl
where %Dise.(th.lxp,'.) = 100 x

theory

Partial Similarity : Often compIete similarity is difficult to achieve or even unde-

sirable. When at least one of the similarity conditions can not be satisfied, partial similarity

is achieved. In this case, the model which has some relaxation in similarity conditions is

called a distorted model These relaxations in the relationship between two systems cause

model behavior to be different from that of the prototype. Since each variable has different

influence on the response of the system, the resulting similarity conditions have different

4
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influence. By understanding the effect of variables and similarity conditions over desired

intervals, the similarity conditions which have the least influence can be neglected without

introducing significant error 3.

The choice of the "right" type of distortion is investigated as follows. In each case, all

of the model parameters except one, are chosen to be identical to its prototype. Then, the

effect of this relaxation for a wide range of this parameter is investigated.

Number of Plies : There are three ways to scale down the number of plies in a model.

[a] ply-level scaling (0,/+45,/90,/-45,),) [hi sublaminate level scaling 4 ((0/+45/90/-45),,) and

[c] general reduction of plies. The ply-leve! scaling leads to complete sirrfilarity(as already

discussed). But the two other methods yield partial similarity. Figure 1 presents the shear

buckling loads for models with different number of plies than those of the prototype and the

predicted loads by using scaling laws depicted by Eq.(6).

Table 2 Accuracy of models with subIaminate level scaling (Np # N,_) using

non-dimensional load K,, )_E., = )_,, = 1; (0/+ 45/90/- 45)i0,.

N-w b2 %Disc.
model K,- E??h 3

Configuration model prototype predicted th.(p)&pr.(p) th.(p)kth.(m)

(0/+ 45/90/- 45)2, 37.813 44.218 ] 44.714 1.12 14.48-(0/+ 45/90/- 45)3, 40.391 44.218 44.187 0.25 5.63

Material • Now we consider distortion in model material. For this purpose two

different groups axe considered: Isotropic materials (which include metals and plastics),

and fiber reinforced composites. In all of these cases the prototype is an angle-ply laxninated

plate.

For the composite model, model and prototype have the same stacking sequence, number

of plies ((0/+ 45/90/- 45)x0,) and aspect ratio. Figure 2 presents theoretical and predicted

buckling loads of prototype and theoretical ones of the models for some typical composite

materials. For the Kevlar/Epox-y prototype almost all considered materials can be used as

the model material or vice versa.

Since plastics axe used extensively in experimental studies of the behavior of the struc-

tures, the possibility of a pl_tic model or in general a model with isotropic material is

considered. For isotropic materials, the assumption of AR = 1 yields a model which cannot

predict accurately the behavior of the prototype. By choosing R= as a design parameter

we are able to find isotropic models which yields excellent accura_. Scaling law depicted
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by Eq.(6), yields acceptable aspect ratios for the models. Tables 3 present theoretical and

predicted buckling loads for prototypes when the corresponding models are made of isotropic

material.

Table Relazation in material properties by using isotropic model,

prototype is Kevlar/Epozy (0/+ 45/90/- 45)1o, •

- N-._b:
model K, = • -

E,o_h3

material _ model prototype ipredicted

-Aluminum 0.868 12.08 43.34 [ 43.34

Copper 10.868 12.01 43.3.4 i 43.34- PVC 0.868 12.66 43.34 t 43.34

%Disc.

--th.(p)&pr.(p) th.(p)&th.(m)

0.0 72.12

0.0 72.29

0.0 [ 70.79

This study presents the applicability of small scale models, especially distorted models,

in analyzing the elastic behavior of angle-ply laminated plates. Distorted models are more

practical, since relaxation of each similarity condition eliminates some restrictions on the

model design. The results presented herein indicate that, for elastic response of an angle-ply

rectang-ular plate, based on structural similitude, a set of scaling laws can be found to develop

design rules for small scale models. Results for buckling characteristics under unia:dal and

vibration characteristic will be presented in the full paper.
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